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SUMMARY 

A numerical calculation has been carried out to evaluate the 3x3 cross-section 
matrix involved in the electron impact excitation of the ground state of H atom to 
the 2s and 2p levels. The method of solution is that of atomic eigenstates expan- 
sion. In this paper, instead of the iterative technique used by other authors, 
the definite integral terms in the coupled radial differential equations are 
eliminated through some linear transformation of the radial functions, thus avoiding 
iteration of these equations. The accuracy of ,the numerical integration is tested by 
satisfying the equation of reciprocity and the equation of continuity of currents with 
an error-to-value ratio less than 1 per 1000 on the average; and the maximum of 
this ratio, except for a few cases, has been kept below 5 percent. The results are 
in agreement with the results of an iterative technique. 

To evaluate the effect of the long-range and the centrifugal potential, a simple 
perturbation theory is developed. The six cross sections IS - 2 s ,  IS  - 2p , I S  - IS, 
2s - 2s , 2s  - 2p, and 2p - 2p are tabulated. The 2p - 2p cross  section requires the 
solution of the se ts  of differential equations with differentparities. With the validity 
of the eigenstates expansion assumed, it is found by comparison with the eigenstates 
expansion calculation that the Born approximation, despite its simplicity, gives 
meaningful results for  low and close-to-the-threshold energies of the bombarding 
electrons. The effect of the exchange potentials on the c ross  sections is also in- 
vestigated. Finally, an interesting structure of the 1s - 2 s  excitation c ross  section 
above threshold is found. 
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THEORY OF THE 2s AND 2p EXCITATION OF 
THE HYDROGEN ATOM INDUCED BY ELECTRON IMPACT* 

bY 
Kazem Omidvar 

Goddard Space Flight Center 

INTRODUCTION 

Calculation of the excitation cross sections in atomic hydrogen by electron impact corre- 
sponds to the solution of the problem of three interacting bodies: one proton, and two electrons. 
By taking the position of the proton as the center of mass, the problem will  reduce to the task of 
finding the nonseparable wave function of the system of the two electrons with an attractive cen- 
ter of force. Such a solution has not been found. However, if  this wave function is expanded in 
terms of the eigenstates of the hydrogen atom, the coefficients of the expansion, which are func- 
tions of the position vector of the free electron, can be found through numerical integration. When 
an infinite number of terms is included in the expansion, the solution to the problem is exact. 
Furthermore, the expansion has the advantage that the asymptotic form of its coefficients is 
automatically the asymptotic form of the free electron wave function scattered from different 
atomic states, which are simply related to the excitation cross  sections. 

In this paper, atomic states I S ,  2s ,2p are included in the expansion and, by antisymmetrizing 
the two electron wave functions according to the exclusion principle, some contribution from the 
continuum in the expansion is also taken into account. The first calculation of this type was per- 
formed by Marriot (Reference l), whose expansion consisted of the 1s and the 2s states in order 
to calculate the 1s - 2s transition cross section. This calculation w a s  extended by Smith (Refer- 
ence 2) to  higher total orbital angular momenta of the system. Percival and Seaton (Reference 3) 
have formulated the eigenstate expansion technique in general and have tabulated the coefficients 
of the integro-differential equations for s , p,  and d atomic electrons. Burke, Smith, and Schey 
(References 4 and 5t) ,  using the equations of Percival and Seaton for the three states IS,  2 s ,  2p, 

have integrated the resulting integro-differential equations. In this paper we solve the same dif- 
ferential equations by a linear transformation of the differential equations in order to  avoid the 
need for iteration of these equations (Reference 6)f 

~~ 

*Also has appeared in a condensed form in the Physical Review, Vol. 133, Feb. 17, 1964. 
tA similar calculation has been performed by R. Damburg and R. Peterkop; this will appear in the USSR Journal of Experimental md 

Theoretical Physics .  A different method to calculate the Is-2s electron impact transition cross section in hydrogen i s  being con- 
sidered by L. Kyle and A. Temkin, adopting the nonadiabatic theory of electron scattering developed by A. Temkin (see  References 
21, 22); the calculation is in progress. 

cases  by iterative, methods. 
SA similar calculation has been carried out in Reference 6. Here the L = 0,l  cases  have been solved by noniterative, and all other 
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The numerical integrations were carried out for all partial waves, while in higher partial 
waves the Born approximation was used. The transition between the eigenstates expansion cal- 
culation and the Born approximation takes place when the results of the two calculations agree 
closely. 

FORMULATION 

Derivation of the Differential Equations 

Since spin orbit interaction of the electrons is neglected, the total orbital angular momentum 
L and the total spin angular momentum s a r e  separately conserved. We can then divide the inter- 
actions into antiparallel spin states, where s = 0, and parallel spin states, where s = 1. We deal 
with spatial wave functions of the electrons only, and for brevity we call the orbital angular 
momentum the angular momentum. 

Neglecting the motion of the proton of the hydrogen atom and taking its position as the origin 
of the coordinate system, the Schroedinger equation for the system can be written 

where rl  and r2 are the position vectors of the bound and free electrons; and in atomic units 

where E is the total energy of the system and rl, is the distance between the two electrons. We 
expand the total wave function $ ( r l ,  r2) in terms of the eigenfunctions of the total angular 
momentum L , 

m 

Since these eigenfunctions are orthogonal and distinct, substitution of Equation 3 in Equation 1 
gives 

[ H - E l  $L ( r l ,  r,) = 0 . 
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The explicit form of $L (r , ,  r , )  is given by 

Here 4 ( n l  4 ,  m l  , rl)  is the hydrogen atom wave function with radial part r;l P(nl C,, rl) and angu- 
lar part Y t  (a,) and quantum numbers nCl ml ; r;' u(kqC, , r , )  is the radial part  and Y t  (R,) is 

lml 2 m2 
the angular par t  of the free electron wave function with quantum numbers kn C, m,. The relation 
between the wave number k 

1 
and n, is given by 

"1 

Finally the Constants C:$ = ( 4 ,  4 ,  ml m, I LM ), with M representing the total magnetic quantum number, 
a r e  vector coupling coefficients which make the linear combination of the products of the one elec- 
tron wave function in Equation 5 the eigenfunction of L. In the problem under consideration, 

To make the total wave function symmetric for antiparallel spins or antisymmetric for  parallel 
spins, the operator P,, interchanges rl  and r2 while p is +1 for the first case and is -I for the 
second. 

n1 = 1, 2 ;  C, = 0, 1; C, = J L - ~ , I ,  I L + C , /  ; ml -c,, , &,;and m, = -C,, e * *  , 4 , .  

By taking L perpendicular to the z-axis, M = 0 and m, = - ml. Equation 5 can then be written 

In order that +L ( r, , r,) closely approximates the exact wave function, we minimize the ex- 
pectation value of the energy operator with respect to the radial parts of the free electron wave 
functions, 

S ~ + ~ ( r , ,  r , ) [ H - E l + , ( r 1 , r , ) d 3 r l d 3 r Z  = 0 . (9) 
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It has been shown by Kohn (Reference 7) that the differences between the scattering amplitudes 
obtained from these equations and the exact scattering amplitudes a r e  quadratic in the difference 
between $L (r l  , r,) and the exact wave function. When the variation is carried out inside the in- 
tegral, we  obtain 

By means of Equations 2 and 8, the Schroedinger equation for the hydrogen atom, 

and Equation 7, Equation 10 reduces to 

x r,-l u(knll c,', r,) Y~;,,, ,O (R,) d3 r l  do, = 0 , (12) 

where Or: is the radial part of "22. By orthogonality of the hydrogen atom and spherical harmonics 
wave functions, the relation (Reference 8) 

the integration by parts of the exchange terms, and th relation* 

*Reference 8 ,  Equation 3.16b. 
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Equation 12 leads to 

If l / rn  is expanded in terms of the Legendre polynomials and.use is made of the addition theorem,* 
we obtain 

A= o 

In this expression el, is the angle between the position vectors rl and r2 at the origin, and r <  i s  
the smaller and r >  is the larger of 1 rl  1 and 1r21. We also introduce 

'2 
%A ( d n ' t ' ,  r 2 )  = r;(*+') jo P(n4, r ,)  P ( n ' t ' ,  r l )  r l  A dr ,  

f r,h ImP(n8 ,  r ,)  P(n' .e', r l )  r;(*+l)dr, . 
12 

*Reference 8,  Equation 4.28. 
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Then it follows that 

By means of Equation 18, the relation* 

and the definition 

Equation 15 when multiplied by r ,  gives 

In the exchange integrals above w e  have defined P kn tZ, r) as u(knl xz, r) . 
( 1  

'Reference 8, Equation 4.34. 
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The vectorial equations 

L = . C , + . C , ,  

where L is constant but 4,  and 4, take the values given before, can be divided into two groups, one 
with L - 4 ,  - C, even and the other with L - 4,- C, odd. Since the total spatial wave function has the 
parity of C, + 4, , in the first group the wave function has  the parity of L and in the second a parity 
opposite to L . By conservation of parity we have two distinct groups of interactions. In this 
problem, where I S ,  2s, and 2p states of atomic hydrogen are taken into account, it is easy to see 
that, when L - 4 ,  - X2 is even, the set of quantum numbers k t2  has four values: one for each of 
the IS and 2s states, and two for the 2p state. WhenL - 4 ,  - 4, is odd, k 4 ,  has one value which 
corresponds to the elastic scattering of electrons by the 2p state of the hydrogen atom. Equation 
21 is evaluated for these cases, and the resulting differential equations are listed in Appendix A. 
In evaluating Equation 21, it should be noted that the cm coefficients are subject to the condi- 
tion that I, 4 ,  C, form a closed triangle and m, = m, + m, .* This limits the summation over h and 
p considerably to few terms only. Summation over ml , m,', A, and p is carried out using the numer- 
ical values of the C coefficients given by Condon and Shortley (Reference 9). 

"1 

"1 

C C C  
1 2 3  

Percival and Seaton (Reference 3) have derived the same differential equations for the scat- 
tering of free electrons by atomic s ,  p,  and d electrons in the hydrogen atom using the theory of 
irreducible tensor operators to evaluate the interaction terms between the two electrons in the 
differential equations. The calculation becomes considerably simpler in this way. The results 
of the two methods are identical. 

In the rest of the paper, except the section on page 14, we discuss the solutions to the four 
coupled differential equations given in Appendix A and which arise when L - 4 ,  - C, is even. The 
single differential equations for L - 4 ,  - I, odd a r e  derived in the excepted section (page 14). Its 
numerical integration can be treated as a special case of the four coupled differential equations. 

When the integrals representing the direct  potentials in the four differential equations are 
evaluated and some change is made in the limits of the exchange potential integrals, these equa- 
tions can be written in the following matrix form: 

The four components of 
matrix that is the sum of three matrices, 

are the four radial functions of the free electron. v is a 4x4 symmetric 

V i j  = Dij + Eij , 

u=1 

*Reference 8, Equation 3.14. 
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where D~~ is the direct potential, E l l  is the exchange potential, and where both are functions of r . 
The matrix E l l  contains in addition integrals with respect to r , and for the purpose of numerical 
integration it can be written as the sum of two matrices. The explicit forms of D~ 

and h,; a r e  given in Appendix B. The value of u is 2 fo r  i = J = 3 and i = J = 4 ,  and is 1 for all 
other values of i and J .  It is understood that for the exchange terms the components of 
right-hand side of Equation 2 3  are inside the integrals of the exchange terms. 

F~ g; , 

on the 

Derivation of the Transmission Matrix from Solutions 
of the Differential Equations 

The method is similar to that used by Bransden and McKee (Reference lo),  and by Marriot 
(Reference 1). Equation 2 3  constitutes a se t  of four coupled second-order differential equations. 
Three components of u can be eliminated from these equations, resulting in an g t h  order differ- 
ential equation for the remaining component. Therefore there a r e  eight sets of solutions to Equa- 
tion 23.  However, only half of these solutions are regular at the origin. Each of the four regular 
solutions corresponds to a definite vector u . The four vectors can properly be represented by a 
4x4 matrix u n j ,  n ,  j = I ,  2 ,  3 ,  4,  where n corresponds to the particular component and j corre- 
ponds to the particular solution of u . The four solutions a r e  carried out numerically in the next 
section. 

From the explicit form of V it can be seen that v vanishes at infinity. The asymptotic solu- 
tion of u as given by Equation 23 is therefore 

where an] is the amplitude and S n l  is the phase shift of the j th solution of the n t h  component of U. 

Corresponding to the four components of u, there are 4 channels open to the reaction. If the 
incident wave is in the m t h  channel (m 1, 2 ,  3 ,  4), the traveling wave in the n t h  channel will be 
given by 

The constants Smn are the amplitudes of the scattered waves. Since Equation 26 is also the 
asymptotic solution of Equation 23, they must be equal to linear combinations of Equation 2 5 .  If 
we call the coefficients of the linear combinations p j ,  we must have 

d 

( k n ) - ’ / ’ { ~ ~ ~ [ - i ( k n r - ~  1 l n n ) ] S ( m , n )  - Smnexp  

( n ,  m 1, 2 ,  3 ,  4 )  . (27) 
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On the right-hand side, we have used the normalization of Blatt and Weisskopf (Reference 11). If 
we equate the coefficients of exp[- i (kn r - 112 Inr)]and exp [i (kn r - 112 I n  il)] in Equation 27, we 
obtain 

Separation of Equations 28 into real and imaginary parts gives 

In the above R o r  9. represent the real  or the imaginary part of the quantity that follows them. 
Equations 29 are a set of 16 linear equations for 16 unknowns R P j  , 9. Pj , R Sm and 9. Smn. Once these 
unknowns a r e  found,* the magnitude of smn will  be given by 

*Equations 29 with their present form and without further simplifications are solvable by the computer. 
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The cross section is obtained by asymptotic expansion in spherical harmonics of the incident 
plane wave* 

- exp [i(kr - 1 T ) ] } Y ~ , ~  

The magnitude of the ingoing wave on the right-hand side of Equation 27 for n = m is 
[ k,/T (21, t I)] v2 times the magnitude of the partial wave of the expansion of r exp [ ik,  Z] . The 
plane wave has a flux of v which, in atomic units, is equal to k .  The ingoing flux of the right-hand 
side of Equation 27 is therefore k,’ /[7~(21, t I)]. The outgoing flux in the channel n # rn is Ismn 1 2  . 
The cross  section is obtained when we average the ratio of the outgoing flux to the ingoing flux 
over the initial states and sum over the final states. For a particular spin state of the two elec- 
trons, unpolarized electron beam, and unoriented atoms, the multiplicity of the initial states is 
(21, t 1) ( 2 1 ,  t 1) , where 1, and 1, are the angular momentum of the bound and free electrons. 
For a polarized beam, m 2  = 0 ,  where m2 is the magnetic quantum number of the free electron. 
Then m l  = M, where m l  and M are the bound electron and the total magnetic quantum numbers. 
Since M is constant, there is only one initial state for a polarized beam. The multiplicity of the 
final states is 2L t 1, where L is the total orbital angular momentum. Since trn = 4 ,  , the c ross  
section for m # n is 

The outgoing partial wave in the incident channel m consists of the scattered wave plus the out- 
going wave given in the expansion of the plane wave. Then, according to Equation 27 for n = rn , 
the magnitude of the amplitude of the scattered wave is 11 - S,, I . The elastic scattering cross  
section is therefore given by 

If we define a matrix T by the relation 

T = 1 - S ,  

~~ 

*Reference 11,  Ch. VIII, Equation 2.7. 
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Equations 32 and 33 can then be combined into a single equation, 

7J(2L+ 1) 
Qmn = kmZ(21, +1) ( T m n  I . 

(35) 

Tmn is the transmitted amplitude in the nth channel due to an incident wave in the m t h  channel. 
The elements of Tmn constitute the transmission matrix. 

The matrix S has two properties that are useful as tests on the accuracy of numerical inte- 
gration. From Equation 26 it can be seen that s transforms the ingoing wave into the outgoing 
waves. The continuity of the electronic current requires that S be a unitary matrix 

4 

Furthermore, since the Hamiltonian is Hermetian, S must be symmetric (Reference 11): 

Equations 36 and 37 are used as tests on the accuracy of numerical integration. 

A Useful Relation 

A relation based on the symmetry of the interaction potentials, which serves as another test 
on the accuracy of the solutions, can be derived. The I t h  and the kth  solutions of the i th  com- 
ponent of u by Equation 23 are given by 

[ s + k ? -  l i  ( l i  -1 + 1) uik = C Vijujk . 
rz 

J 

Multiplying the first by uiL and the second by u i l  , subtracting the two expressions, and summing 
over i gives 

(39) 
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Since v i j  = V j i  , the interchange of the summation indices changes the sign on the right-hand side 
of the equation; the right-hand side must therefore be zero. Integrating the left-hand side from 
zero to infinity, we obtain 

d2 
uik 7 U .  - u .  - u,]dr = 0 . d": dr2 

1 

Integrating the above equation by parts, and applying Equation 25, we obtain 

4 

F k i  aik a i l s i n  ( S i k - S i l )  = 0 (k ,  L = 1 ,  2 ,  3 ,  4 ,  k # 1 )  . 

Although the terms containing the exchange potentials do not cancel out on the right-hand side of 
Equation 39, the cancellation does take place after the integration is carried out in Equation 40. 

Transmission Matrix According to Born Approximation 

The Born approximation consists of neglecting the exchange potential terms appearing in the 
v matrix of Equation 23, and also of neglecting all the direct potential t e rms  in this matrix except 
those terms that  connect the incident channel to all other channels (Reference 12). Equation 23, 
when the incident wave is in the m t h  channel, reduces to 

[" dr2 k: - l n  ':2' :'I un = 2 D n m u m  ( n  1, 2 ,  3,  4) ; 

urn and u, are given asymptotically by 

urn 2 km-l/* s i n  (km r - L m  $) (43) 

We have chosen the constants of proportionality of urn and LI,, such that Bnm is the Born approxima- 
tion of the reactance matrix R (Reference 13).* Equation 43 shows that urn must have the follow- 
ing form (Reference 14): 

urn = k:'2 r j (km r) , (45) 
m 

'Also Reference 1 1 ,  Ch. X,  Sec. 4. 
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_ -  

where j (km r) are spherical Bessel functions. Furthermore, if  y, represents the homogenous 
solution of Equation 42, it must have the following forms: 

m 

( (47) 
* y, - a,, s i n  kn r -  1,  5) , 

with a, some unknown constant. Multiplying Equation 42 on the left by y, and integrating the re- 
sult from zero to infinity, we obtain by partial integration 

J O  

= - k:” a n B n m  . 

The last equality has been obtaineL -y noticing that y, and U, vanish at t..e orig--i, and by using 
their asymptotic forms as given by Equations 44 and 47. We therefore have 

This is identical to the expression given for B by Seaton.* 

The transmission and the reactance matrices are related by T = - 2iR’( 1 - i R ) .  Since in the 
Born approximation R = B << 1, the transmission matrix according to the Born approximation iS 

given by 

Substitution of Equation 49 into 35 would give the cross section according to the Born approxima- 
tion. It should be noted that the symmetry of T insures Equation 37 to be satisfied while Equation 
36 is no longer satisfied. 

*Reference 13, Equation 3.10. 
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Elastic Scattering of Electrons by the 2p States of the Hydrogen Atom 

The angular momentum of the free electron 1 in the 2p channel has the values L - 1,  L , L t 1 , 
where L is the total angular momentum of the system. The first and the last values were consid- 
ered in previous sections. The case 1 = L corresponds to a wave function in the 2p channel with 
a parity different from all channel wave functions considered previously. It therefore corresponds 
to elastic scattering. The wave function in this case is given by 

t1 

When Equation 9 is formed with th i s  wave function, and minimized with respect to "(kz  L , r , )  , 
treatment which led to the derivation of the four differential equations will give the following dif- 
fer entia1 equation: 

3yL-, ( 2 P k 2 L ,  r )  3yL+, ( 2 p k 2 L ,  r) 
2 D r R z 1 ( r ) [ -  ( 2 L t 1 ) ( 2 L - 1 )  + ( 2 L + l ) ( 2 L t 3 ) ]  = 0 ' 

The asymptotic solution of this equation is given by 

(52) uL 2 aL s i n  (kz  r -Ln/2 + S L )  . 

If the scattering amplitude is designated by T,, , it can be shown from the section on page 8 that 
for a particular L 

T,, = 1 - e x p 2 i S  = - 2 i e x p ( i 8 ) s i n S  , (53) 

where for simplicity we have suppressed the subscript L .  The cross  section, according to Equa- 
tion 35, is given by 

47r(2L+ 1) 
s i n ' s  . 

Q55 = 3k 2' (54) 
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The total elastic scattering cross  section by the 2p states is the sum of this cross  section and 
the cross  section corresponding to 1, L - 1 and 2 = L + 1 (which were considered previously). 

The Born amplitude, Equation 48, in this case is given by 

B,, = - 2k, lom j L ( k Z  r) D,, j L ( k Z  r)  r z  dr , 

where, by Equation 51, 

(55) 

NUMERICAL INTERGRATION 

Decomposition of the Differential Equations 

If it were not for the definite integrals appearing in the potential matrixv, the set  of the four 
coupled differential equations (23) could be integrated by any standard technique. The presence 
of these unknown constants whose integrand involves the unknown functions makes it necessary 
to solve these equations by iteration or by transformation of into other vectors, whose differ- 
ential equations do not contain definite integrals. Since the terms containing definite integrals 
are small as compared with the direct potentials, the iteration method can be used by assuming 
that the values of these integrals a r e  zero. The differential equations are then integrated, the 
values of the definite integrals that are subsequently obtained are substituted in the differential 
equations, and the integration is repeated. The process is repeated until sufficiently consistent 
values of these integrals are obtained. This method is useful if  the convergences of the constants 
are fast enough, and the cross  section is not very sensitive to the values of these constants. 

In the second method, the transformation of fixes the values of the constants and thus 
avoids iteration, whereby the computation is reduced considerably. The description of the method 
will  be given here (Reference 15).* 

By making use of Equations 24, Equation 23 can be written 

'Also, Reference 1. This description differs from the description of Reference 15 and the present paper. In Reference 1, vi in Equa- 
tion 61 i s  set to 0; this makes B.P = 0. Equations 62 then reduce to a set of homogeneous equations whose determinant must be 0. 
Since the amplitude of any of the four components ofu can be left arbinary, one of the CLl is set  equal to 1 and the test of the con- 
stauts are found subsequently. 

'I 
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where 

We introduce the functions v i  and ~ i k l  that are solutions of the following differential equations: 

l i  ( l i  +1)-j = 2 r z  Ukl [ D i j  + F i j ]  u:' + 2 6 ( i ,  k )  g$ 
j=1  

Then u i  is given by the following expression: 

Equation 61 can be verified by multiplying Equation 60 by C C l ;  summing over k ,  z, and v; and add- 
ing to Equation 59-whereupon Equation 57 results. Substitution of Equation 61 in Equation 58 
gives 

where andB; are defined by 

The numerical integration is carried out by integrating Equations 59 and 60 by any standard 
method, calculating A ( k z  and B; by Equations 63 and, finally, solving the system of 18 algebraic 
equations given by Equation 62 to find c;l. With the known values of these constants the integra- 
tion of Equation 57 is straightforward. 
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The determinant of Equation 62 becomes singular for L = 0 and 1. This is shown in Appendix 
C. To remove the singularity, some of the C I I  are chosen arbitrarily, and the rest  of the c;~ are 
found in terms of the chosen ones. 

Solution a t  the Origin 

In order that the four solutions of u be independent of each other, we must have 

1-1 

where CJ a re  some constants. A necessary condition for this to  be satisfied is that the deter- 
minant of Equation 64 be nonzero: 

It is not difficult to see that this also is a sufficient condition. At the origin the solution uij  can 
be expressed as power ser ies  in r , 

where a{  a r e  the coefficients of expansion, and s i  a re  given integers for each component of 
and a re  fixed by the behavior of Equation 23 at the origin. We can satisfy Equation 65 at the origin 
by having 

By choosing suitable values of a:, subject to the restriction of Equation 67, four independent 
solutions a r e  obtained. 

Solution a t  large r 

With given initial values, the solution of Equation 23 can be extended from origin to any de- 
sired value of r .  To obtain the asymptotic amplitudes and the phase shifts, the presence of the 
centrifugal and long-range potentials makes it necessary to extend the solutions to  infinity. This 
is undesirable because of the time consumption on the computer, and the accumulated e r ror  due 
to the long-range integration. Seaton (Reference 13) has solved the problem of r-2 long-range 
potentials occurring in the off-diagonal terms of the potential matrix v by diagonalizing the 
asymptotic form of the differential Equation 23 and the corresponding s-matrix. By an inverse 
transformation the elements of the original S -matrix a re  found. 
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Instead, we develop here a perturbation theory which is based on the method described by 
Mott and Massey (Reference 16). The e r r o r  in the resulting solution is inversely proportional to 
the square of the distance from the origin. 

Equation 23 for large distances of r can be written 

where u is the sum of the centrifugal potential matrix and the asymptotic form of the v matrix. 
The elements of u are given in Appendix D. A component of Equation 68 is of the following form: 

g ( r )  << k2 u ( r )  ( g ( r )  -+ 0 as r - a) . 
The perturbation theory is applied between some large distance R and infinity. Suppose u vanishes 
at R ; then we have the following boundary condition: 

u(R) = 0 

If we represent the solution of the homogenous equation by y (  r )  , at infinity, we must have 

i y ( r )  = a s i n ( k r - k R ) ,  

u ( r )  = ( a + A a ) s i n ( k r - k R + q )  , 

where a is the amplitude of U (  r )  if g(  r ) were identically zero and AA and q are generated by 
g ( r ) .  Since g ( r )  is small, we can write 

u = Y ( 1 + 5 )  9 (72) 

where 5 is a small  function. Substitution of Equation 72 in Equation 69 gives 

(73) 

where, upon double integration, we obtain 

The constants of integrations a r e  fixed by the condition (70) and the fact that u' (R) = y '  (R) . 

18 



We now integrate Equation 74 by parts, 

When the integration with respect to Y is carried out, and the result is substituted in Equation 73, 
we obtain 

1 u ( r )  = s i n ( k r - k R )  g ( r ) c o s ( k r - k R ) d r  

+ cos (kr - kR) [- [ g( r )  s i n  (kr - kR) dr  . 1 (76) 

Comparison of the second of Equations 71 and 76 shows that 

7 = - j R m g ( r ) s i n ( k r - k R ) d r  1 
to first order. The functions g( r )  in the four differential Equations 68 are given by 

To first order this can be written by 

g1 ( r )  = 2 a, Uij sin (k, r - k,  R I )  , 

1 

where R j  is the last zero of U, with positive slope. Substitution of this equation in Equation 77 
gives 

1 bi = - c? IRicos (ki  r - k i  R i )  U i j  sin (kj r - k,  R j )  dr . 
i 

(79) 
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A a i  and 7 ,  can easily be calculated by substituting the values of U i j  from Appendix D, integrating 
the resulting integrals by parts, and retaining the leading terms. 

The asymptotic amplitudes and phase shifts are given by 

where a l  ( R ~ )  and 8 ,  ( R , )  are the amplitudes and total phase shifts calculated at R, by the ma- 
chine, and where S ( i  , 3)  and 6 ( i ,  4 )  a r e  the 6 functions. 

Details of the Numerical Integration 
Milne's (Reference 17) method with variable mesh size and Simpson's* rule were used for 

the integration of the differential equations and evaluations of the integrals respectively. As the 
solution advances from the origin, the differential equations become less sensitive to the size of 
the increment, and the e r ro r  of integration falls below certain small number E .  At each value of 
r the value of the function is found, first with the given value of the increment, and second with 
the value of increment divided in half. The e r r o r  of integration is defined as the difference be- 
tween these two solutions. When the e r r o r  becomes small, the increment is doubled until a 
maximum value is reached. At some distance R ,  all the exchange potentials and, similarly, all 
the direct potentials except those representing optically allowed transitions and the 2p - 2p elastic 
scattering potential become vanishingly small (see Appendix D). At this distance the set of dif- 
ferential equations is replaced by the simpler set  containing only these potentials. The integra- 
tion is continued until some distance R, ,  where the first-order solution of the rest of the range of 
integration is obtained by the method developed in the previous section. No attempt was made to 
solve any set of linear equations o r  any matrix equations, as these equations a r e  solvable by the 
computer in their original form. 

The values of the constants of the numerical integration are given below; h i  and h ,  are the 
initial and the final increments of integration. In some exceptional cases, different values were 
used. 

h,  = 0 .05  

R, = 30 

R, = 200 

(All quantities are in units of Bohr radius except E ,  which is dimensionless.) 

*Reference 17, Sec. 33. 
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RESULTS AND DISCUSSION 

The differential equations (23) with the known values of the elements of the potential matrix 
v as given in Appendix B were integrated numerically by the methods described in the last sec- 
tion. By choosing different values for the determinant (Equation 67) different sets  of independent 
solutions can be generated. The cross sections reported in this paper have been obtained by 
averaging the cross  sections obtained from two independent se t s  of solutions. To test the ac- 
curacy of the numerical integration, we define the three quantities D,,, D,',, and Dm" given by 

Dm" = 
(84) 

n= 1 

Based on Equations 36, 37, and 41 in an exact solution of the four differential equations, the right- 
hand side of these equations would vanish; they can therefore be used to test  the accuracy of the 
numerical integration. A s  an illustration the numerical values of D,,, D,',, and D," for the case 
of 1s-2s-2p coupling, p = + 1 , k ,  = 2.0 ,  and L = 3 ,  are given below: 

D,, = 1 . 4  1 0 - ~  , D,, = 2 . 6  10-4 , D,, = 1 . 3  1 0 - ~  . 
D,, = 5 . 1  x , D,, = 2 . 2  10-3 , D,, = 1 . 8  10-3 , 

D~; = 7 .6  10-4 , D~; = 5 . 1  10-3 , D,; = 5 . 6  10-3 , 

D,; 5 . 4  10-3 , D,: = 5 .7  10-3 , D~; = 1 . 3  10-3 , 

D; = 1 . 8  10-4 , D;' = 7 . 6  10-5 , D; = 2 . 5  10-4 , D; = 4 . 4  10-6 . 

To compare the results of the numerical integration by the noniterative method we have 
carried out here with those of the iterative method of References 2, 4, and 5, we have provided 
Table l .* The IS - 2s excitation cross section is given by the two methods; I and 11 refer to the 

'Author is indebted to Dr. K. Smith for sending some of the data used in Table 1. 
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Q1. - *s 
t I  I1 

kl L -  

0.90 0 0.0384 0.0375 
1.00 0 0.0714 0.0725 
0.90 1 0.008 0.0017 
1.00 1 0.051 0.0583 

, S e e  Reference 2. 
S e e  References 4 and 5. 

Emax (percent) 

I I1 

7.1 0.72 
unknown 0.53 
386 0.91 
55 0.75 

iterative and noniterative methods, 
respectively; and E,,, is the maxi- 
mum of the e r r o r  to  value ratios in 
the reciprocity relations (Equation 
83). In the IS  - 2s eigenstates 
coupling approximation the non- 
iterative method is far more ac- 
curate than the iterative method 
and, as is seen, the c ros s  sections 
by the two methods differ from each 
other sometimes in their  first 
significant figure. In the 1s - 2s  - 2p 

eigenstates coupling approximation, 
on the other hand, the results by 
the iterative method seems to be 
somewhat more accurate. The 
reason is contributed to the effect 
of the r - 2  long-range potential, 
which appears in the differential 
equations when the 2p state is in- 
cluded in the eigenstates coupling 

L k, 

0.90 0 
1.00 0 
0.90 1 
1.00 1 

approximation. Two different methods a r e  used in References 4 and 5 and in the present paper 
to estimate the effect of this potential for large distances; and it may be that in References 4 and 
5 this effect is better taken into account. Nevertheless the c ross  sections are the same in their  
first three decimal places. 

Q l s  - 2, Emax (percent) 

SI I1 I I1 

0.0529 0.523 0.40 0.40 
0.0766 0.0768 0.12 0.60 
0.0045 0.0048 2.3 10 
0.0145 0.0147 0.33 1.3 

In Figure 1 we present the theoretical and the experimental estimate of the IS  - 2s  excitation 
c ross  section. The calculated curves a r e  Born, IS - 2s coupling, I S  - 2s - 2p coupling exchange 
neglected, and Is  - 2s - 2p coupling exchange included approximation. The first three of these 
curves a r e  the same as References 4 and 5. The experimental curves are those of Lichten and 
Schultz (Reference 18) and Stebbings, Fite, and Hummer (Reference 19). The various calculated 
results agree better with the results of Lichten and Schultz. However, recent calculations of 
Taylor and Burke (Reference 20) have shown that, in an eigenstates expansion calculation where 
Is, 2 s ,  2p, 3 s ,  and 3p are included, the c ross  section at the peak of the IS - 2s - 2p curve is re- 
duced by 30 percent. This suggests that, within the eigenstates expansion approximation, more 
states should be included to  insure that the convergence has been achieved; and the discrepancy 
between the two experimental results is still an unresolved problem. A s  another theoretical ap- 
proach to  the problem, H. L. Kyle and A. Temkin (Reference 21) have extended the nonadiabatic 
theory of scattering developed by A. Temkin (Reference 22) to the L = 0 ,  IS - 2s inelastic scatter-  
ing of electrons by the hydrogen atom. They find a 30 percent decrease in the I s  - 2s cross  section 
as calculated by the Is - 2s close coupling approximation. 

Comparison of the exchange neglected and exchange included IS - 2s - 2p coupling shows that 
exchange is mostly important at threshold, and its effect does not extend beyond 20 electron volts. 
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Table 2 gives the numerical values of 
the 1 s  - 2s cross  section in different approxi- 
mations. The 1 s  - 2s excitation cross  section 
in the singlet state has an interesting be- 
havior immediately above threshold. I n  
Figure 2 this cross section for a range of 
600 m i l l i  electron v o l t s  (mev) above 
threshold is plotted. In the 1s - 2s coupling 
approximation a maximum appears at 34 
mev, while in the 1 s - 2 s - 2 p  coupling ap- 
proximation there are three maxima of 
approximately the same magnitudes at 17, 
34, and 87 mev, respectively. In the singlet 
case the cross  section rises sharply within 
a range of 17 mev above threshold to a value 
of about 0 . 0 4 ~  a$ it then r i ses  with an ap- 
proximately constant and small slope. The 
contribution of the triplet case is seen to be 
almost negligible at the threshold, and it has 
no maximum in this region. It should be 
noted that the principal maximum in the 
IS-2s excitation cross  section appears at 
about 3 ev with a value of about 0.35, and has 
a contribution from a higher angular mo- 
mentum than L = o .  Although no study has 

z 
I- /EX.  NEGL. o 0.4 

10 15 20 25 30 35 40 45 50 

ELECTRON ENERGY ( ev ) 

F i r r e  1 - 1 s -  2s total excitation cross section. (1s - 2s 
re ers to Is - 2s  eigenstates coupling approximation; 
Is - 2s - 2p has similar meaning. EX. NEGL. refers to 
exchange neglected case, BORN i s  the Born approxima- 
tion, and EXP. refers to experiment.) 

been made to relate the existence of the maxima above threshold to  any physical phenomena, it 
may be said that, similar to  resonances below threshold in the elastic scattering of electrons by 
the hydrogen atom, these maxima are due to formation of some unstable states of the negative 
hydrogen ion. The numerical values of the IS - 2s cross section at threshold a r e  given in Table 3. 
Damburg and Peterkop (Reference 6), and Gailitis and Damburg (Reference 23) have made an 
extensive study of the behavior of different cross  sections near threshold in the IS - 2s and the 
1 s  - 2s - 2p eigenstates coupling approximations. 

In Figure 3 w e  have shown the 2s - 2s elastic cross section. The IS - 2s coupling approxima- 
tion gives a value of 944 T a: at zero incident energy, while the corresponding value in the Born 
approximation is 768n a:. The high value of this cross section at zero energy is in sharp con- 
trast with its geometrical cross  section. The zero energy 2s - 2s cross  section in the IS - 2s - 2p 

coupling approximation, because of the r-2 potential, is difficult to  find. The 2s - 2s cross  section 
has certain maxima and minima at low energy which a r e  not found in the IS - 1 s  cross  section. 
Figure 4 shows the L = o singlet and triplet 2 s  - 2s cross section in the two approximations. While 
there is one minimum in the i s - 2 s  coupling approximation, there are three minima in the 
1s - 2s - 2p coupling approximation. It is thought that the existence of these minima is due to a 
wider potential range in the 2s - 2s scattering, a case which does not exist in the IS- IS 
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Table 2 
1s - 2 s  Excitation Cross  Section. 

[a) Born approximation 

0.04795 
0.07073 
0.07896 
0.06606 
0.03363 

. ,  _ _  
L = l  I L = 2  1 L = 3  I L = 4  1 L = 5  

0.00981 I 0.00021 I 0.00000 I 0.00000 I 0.00000 
0.00428 
0.01141 
0.01858 
0.02979 
0.02521 

L = 6  I L = 7  I c 
0.00000 I 0.00000 I 0.17378 

0.00909 
0.00320 

0.01019 0.00866 0.00628 0.00394 
0.00420 0.00431 0.00385 0.00301 

0.0749 I 0.3535 I -- -- -- -- -- I 0.6486 
0.1427 
0.1142 
0.1137 
0.0861 
0.0373 

-- -- 0.5227 0.1598 0.0517 -- 
0.0298 0.0616 0.0231 -- -- -- 0.3238 
0.0032 0.0360 0.0244 0.0135 -- -- 0.2502 
0.0201 0.0068 0.0112 0.0118 0.0074 -- 0.1683 
0.0255 0.0107 0.0046 0.0034 0.0033 -- 0.0949 

-- 

r 
k ,  L = O  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  2, 

0.0392 0.9 0.0375 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 -- 
1.0 0.0725 0.0583 0.0002 0.0000 0.0000 0.0000 0.0000 -- 0.1310 
1.1 0.0701 0.0525 0.0023 0.0000 0.0000 0.0000 0.0000 -- 0.1249 
1.2 0.0547 0.0534 0.0054 0.0002 0.0000 0.0000 0.0000 -- 0.1137 
1.5 0.0241 0.0384 0.0110 0.0022 0.0004 0.0001 0.0000 -- 0.0762 
2.0 0.0072 0.0157 0.0093 0.0041 0.0015 0.0005 (l.0002 -- 0.0385 

I 

--- 
--- 

.. 

1.0 
1.1 
1.2 
1-5 
2.0 

0.0021 0.1528 0.0446 0.0021 0.0001 0.0000 0.0000 
0.0044 0.1052 0.0568 0.0068 0.0005 0.0000 0.0000 
0.0061 0.0737 0.0576 0.0114 0.0015 0.0002 0.0000 
0.0073 0.0355 0.0406 0.0174 0.0050 0.0012 0.0002 
0.0049 0.0162 0.0205 0.0143 0.0074 0.0032 0.0012 

L = 4  L = 5  L = 6  --- L = 7  I Xs I -- -- -- -- I 0.1191 1 
-- 
-- 
-- 
0.0023 
0.0011 
0.0005 
-- 

-- 
-- 
-- 
0.0026 
0.0008 
0.0006 
-- 

QT 
0.173 79 
0.24827 
0.24623 
0.22800 
0.16706 
0.10187 
0.04758 
0.02720 

0.00026 
0.00125 
0.00299 
0.00939 
0.01365 

0.00000 
0.00011 
0.00039 
0.00242 
0.00614 

0.00000 
0.00001 
0.00004 
0.00053 
0.00236 

0.12704 
0.05872 
0.01946 

0.00123 

0.2202 
QT 

0.6486 
0.5227 
0.3238 
0.2502 
0.1683 
0.0953 

0.0594 
0.0249 
0.0101 

I Trinlet 
Q T  I 'S ' 'T 

0.2142 
0.3327 
0.2987 
0.2642 
0.1833 
0.1062 

- - - r - - -  

k, I L = O  I L = l  I L = 2  I L = 3  1 L = 4  I L = 5  I L = 6  
0.9 I 0.0004 1 0.1686 10.0060 I 0.0000 I 0,0000 I 0.0000 I 0.0000 0.1750 

0.2017 
0.1737 
0,1505 
0.1072 
0.0677 

0.2142 
0.3327 
0.2987 
0.2642 
0.1833 
0.1068 

k, 
0.9 
1.0 
1.1 
1.2 
1.5 
2 .o 
3 .O 
4.0 

L = O  
0.0523 
0.0768 
0.0585 
0.0382 
0.0123 
0.0049 
0.0010 
0.0003 

L = 3  

0.0092 
0.0236 
0.0252 
0.0041 
0.0021 
0.0023 
0.0012 

-- 
L = l  

0.0048 
0.0147 
0.0245 
0.0251 
0.0308 
0.0152 
0.0031 
0.0010 

L = 2  
0.0620 
0.0833 
0.0647 
0.0246 
0.0015 
0.0068 
0.0031 
0.0012 

-- 
0.0055 
0.0081 
0.0051 
0.0010 
0.0015 
0.0010 

-- 
-- 
0.0028 
0.0034 
0.0010 
0.0009 
0.0008 

0.1840 
0.1768 
0.1240 
0.0621 
0.0329 
0.0130 
0.0055 

iiplet 
L = 5  
-- 
-- 
-- 
0.0076 
0.0054 
0.0025 
0.0029 
0.0022 

QT 
~ _ _  

0.1971 
0.3513 
0.3366 
0.2596 
0.1573 
0.0907 
0.0439 
0.0261 

L =  1 
.0748 

0.1224 
0.1013 
0.0724 
0.0333 
0.0155 
0.0048 
0.0019 

L = 4  
-- 
-- 
0.0131 
0.0105 
0.0046 
0.0044 
0.0044 
0.0027 

L = 6  
-- 
-- 
-- 
-- 
0.0049 
0.0023 
0.0018 
-- 

0.0045 
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Figure 2 -L = 0, ls  - 2s  excitation cross section above threshold. (The cross sections are given for the two spin states 
singlet and triplet, and for the two a proximations 1 s  - 2s  and 1s - 2s - 2p. The total cross section i s  the sum of the 
singlet and the triplet cross sections.r* 

0.01 - 

scattering. In Table 4 we have listed the nu- 
merical values of the 2 s - 2 s  cross  section in 
different approximations. 

In Figure 5 the four calculated curves for 
the I S - 2 p  excitation c ross  section a r e  com- 
pared with the measurement of Fite, Stebbings, 
and Brackmann (References 24 and 25). The 
I s  - 2 s  - 2p and the Born curves a r e  the same as 
in References 4 and 5, but the I S - 2 s - 2 p  ex- 
change neglected and the 1s - 2p curves a r e  not 
calculated in these references. As concluded 
before, the calculated curves a r e  higher than 
the experimental. Moreover, we notice that, 
similar to the I S - 2 s  excitation c ross  section, 
the inclusion of the exchange lowers the value 
of the cross  section at  threshold. Table 5 gives 
the numerical values of the IS - 2p cross  sec- 
tion in different approximations. 

The c a l c u l a t i o n  of the 2 p - 2 p  elastic 
c ross  section is more complicated than the 
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Figure 3-2s - 2s total elastic cross section. (Curves 
are designated as in Figure 1.) 

*According to Gailitis and Damburg, when the energy difference between the 2s and 2p states is neglected in the 1s - 2s - 2p couplings, 
the Is + 2s  excitation cross section does not go to zero a t  threshold ( s e e  Reference 23, and Figure 2). Figures 2 and 4 show that in 
the 1s - 2s  - 2p couplings, if E,  -1 and E, represent the energy with respect to the threshold of the two neighboring maxima or minima 
thenE,  /E, -1 '2 constant. This  maybe attributed to the r-2 potential, which is due to  the coupling between the 2s and the 2p states. 
For further details, see  Reference 23. 
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Figure4 - L = 0, 2s - 2 s  elastic cross section. (Curves are designated as in Figure 2.) 

0 0.01 0.02 0.025 

0 1.36 5.44 8.50 

0 0.0168 0.0298 -- 

Table 3 

0.030 

12.2 

0.0377 

0.0349 

0.080 

87.0 

0.0423 

0.0395 

The Singlet L = 0 ,  1 s  - 2s Excitation Cross Section Near Threshold.* 

0.035 0.04 

16.7 21.8 

-- 0.0423 

0.0405 0.0353 

0.090 0.100 

110. 136. 

0.0412 0.0405 

0.0392 0.0385 

0 

0.045 

27.5 

-- 

0.0346 

E(mev) 

Q2 

-- 0.0149 

0.050 0.060 

34 .O 49.0 

0.0446 0.0441 

0.0405 0.0391 

0.0259 

0.070 

66.6 

0.0435 

0.0361 

*k2 is the wave number of the inelastically scattered wave, and E is the corresponding energy in mev; Q 1 and Q2 are the cross sec- 
tions according to the I s  - 2s  and the I s  ~ 2s - 2p couplings, respectively. 
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Table 4 
2s  - 2s Elastic Cross Section. 

k, L = O  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  c 
0.24 32.02 8.489 42.26 -- -- -- -- -- 82.77 
0.50 2.041 7.710 23.35 9.004 9.368 7.702 5.870 -- 65.045 
0.68 2.255 8.247 15.16 5.547 4.373 3.755 2.975 -- 42.312 
0.83 1.861 8.206 10.67 4.637 2.792 2.223 1.818 -- 32.207 
1.23 1.716 4.987 5.030 3.321 1.797 1.058 0.7179 -- 18.537 

9.707 1.80 1.020 2.134 2.150 1.750 1.275 0.8320 0.5457 -- 

(a) 
L = 3  

0.003 19 
0.55306 
1.7023 
2.5080 
2.7483 
1.6805 
0.61123 
0.27339 

QT 
82.78 
65.052 
42.316 
32.226 
18.726 
10.352 

Born approximation 

Singlet 7 

--- k, L = O  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  I s  
8.792 --- 0.24 0.3303 8.196 0.2628 0.0028 -- -- -- -- 

0.50 1.532 10.38 0.0275 0.0048 0.0008 0.0002 0.0249 -- 11.97 
0.68 1.115 5.536 1.502 0.1150 0.0087 0.0010 0.0017 -- 8.279 
0.83 0.8980 3.512 1.997 0.4303 0.0747 0.0129 0.0032 -- 6.928 
1.23 0.5702 1.413 1.236 0.7010 0.3129 0.1228 0.0450 -- 4.401 
1.80 0.2825 0.5370 0.5285 0.4193 0.2931 0.1863 0.1110 -- 2.358 

Triplet 
'S + 'T Q, 

k, L = O  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  2, 
0.24 45.94 118.8 7.713 0.0540 -- -- -- -- 172.51 181.30 181.31 
0.50 0.2102 34.44 21.05 2.776 0.2521 0.0316 0.0994 -- 58.86 70.83 70.84 
0.68 1.366 18.13 12.74 4.059 0.8282 0.1463 0.0442 -- 37.31 45.60 45.60 
9.83 2.112 11.65 8.725 3.887 1.230 0.3225 0.0850 -- 28.01 34.94 34.96 
1.23 1.811 4.691 4.008 2.585 1.399 0.6637 0.2862 -- 15.44 19.84 20.03 
1.80 0.8989 1.735 1.652 1.316 0.9510 0.6359 0.4008 ~ -- 7.590 9.947 10.592 . 

A L  
0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 - 

L Z 2  
0.27680 
5.0152 
7.4981 
7.5601 
4.9702 
2.2763 
0.68903 
0.28658 

L = 6  
0.00000 
0.00022 
0.00658 
0.03393 
0.22452 
0.4 1776 
0.31076 
0.17946 

L = 7  
0.00000 
0.00001 
0.00078 
0.00621 
0.07803 
0.22120 
0.21860 
0.14029 

c 
406.16 
143 2 6 9  
81.700 
55.427 
25.879 
11.680 
4.0011 
1.8106 

L = l  
15.910 
32.129 
24.746 
17.895 
7.6846 
2.7773 
0.71381 
0.27611 

L = O  
389.97 
105.52 
47.381 
26.562 
8.2461 
2.4331 
0.5245 
0.18794 

143.276 
81.703 
55.440 
25.990 
12.105 
4.8280 

Singlet - 
k, 
0.24 
0.50 
0.68 
0.83 
1.23 
1.80 
2.87 
3.91 - 

22.42 
c, 

45.01 
15.057 
8.820 
6.347 
4.332 
2.3553 
0.9223 
0.3659 

'S ' 'T 
152.42 
97.206 
54.099 
36.686 
19.955 
10.002 
3.7636 
1.4797 

L = O  
7.800 
0.2858 
0.0661 
0.1675 
0.3739 
0.2416 
0.0847 
0.0365 

L = 4  
-- 
2.925 
1.480 
0.8282 
0.3940 
0.2923 
0.1280 
0.0660 

L =  5 -- 
2.063 
1.098 
0.6606 
0.2496 
0.1928 
0.1057 
0.0599 

L = 6  
-- 
1.49 1 
0.7928 
0.5071 
0.1827 
0.1247 
0.0852 
-- 

L = 3  

4.447 
1.884 
0.9905 
0.7196 
0.4133 
0.1466 
0.0698 

-- 
L = 7  
-- 
-- 
-- 
-- 
0.1409 
0.0799 
0.0658 -- 

0.6960 
1.044 
1.088 
1.075 
0.4974 
0.1489 
0.0635 

3.149 
2.455 
2.105 
1.196 
0.5133 
0.1574 
0.0702 

Trip1 
QT 

152.43 
97.213 
54.103 
36.705 
20.066 
10.427 
4.5905 
2.7306 

L = 7  2, 
107.41 
82.14 
45.28 
30.343 
15.622 
7.648 
2.8413 
1.1138 

L = 6  -- 
4.257 
2.090 
1.246 
0.5658 
0.4305 
0.2623 
-- 

L = l  
1.236 
17.19 
12.88 
9.166 
4.199 
1.656 
0.4652 
0.1945 

0.68 2.346 
0.83 1.709 
1.23 1.391 
1.80 0.7898 
2.87 0.2622 
3.91 0.1113 
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Table 5 
Is - 2p Excitation C r o s s  Section. 

(a) Born approximation 

L = l  L = 2  L = 3  L = 4  
0.3985 0.6497 -- -- 
0.2917 0.8190 0.2190 0.0476 
0.2008 0.6201 0.3696 0.1380 
0.1251 0.4481 0.3922 0.2044 
0.0334 0.1671 0.2568 0.2295 
0.0068 0.0394 0.0837 0.1089 

L = 5  L = 6  L = 7  c QT . 
-- -- -- 1.2082 1.2194 
0.0224 -- -- 1.5004 1.5041 
0.0586 0.0166 -- 1.5017 1.5150 
0.1014 0.0403 -- 1.3937 1.4416 
0.1706 0.1136 -- 1.0082 1.2645 
0.1165 0.1042 -- 0.4700 1.0036 

L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  2, --- 

L = O  I L = l  I L = 2  
0.00107 I 0.46700 I 0.09607 

L = 5  [ L = 6  I L = 7  
0.00007 I 0.00001 I 0.00000 

c 
0.56534 
1.03787 
1.22158 
1.27961 
1.09696 
0.59065 
0.14449 
0.04142 

L = 4  
0.00087 
0.03964 
0.11533 
0.17908 
0.21386 
0.11287 
0.02309 
0.00586 

L = 3  
0.01025 
0.13467 
0.24992 
0.29903 
0.23775 
0.09386 
0.01537 
0.003 59 

0.00499 0.48867 0.35645 
0.00702 0.36207 0.41698 
0.00747 0.25540 0.38137 
0.00550 0.09184 0.19986 
0.00234 0.02222 0.05938 
0.00048 0.00285 0.00806 L 0.00013 0.00066 0.00179 

0.01 03 2 
0.04649 
0.09269 
0.16292 
0.11376 
0.02920 
0.00816 

0.00254 
0.01753 
0.04453 
0.11291 
0.10248 
0.0327 1 
0.0 10 09 

1.03851 
1.22859 
1.30741 
1.28101 
1.04055 
0.66256 

0.00059 
0.00624 
0.02004 
0.07232 
0.08374 
0.03273 
0.01114 

1.5 
2.0 
3 .O 

1.5 

*I 
0.1007 
0.0980 
0.0822 
0.0372 
0.0105 

(c) IS - 2p eigenstates coupling approximation 
1 Sinal e t  

L = l  
0.1216 
0.0655 
0.0366 
0.0169 
0.0037 
0.0006 

0.3011 
0.3948 
0.3088 
0.0821 
0.0131 

0.0057 
0.0260 
0.0517 
0.0718 
0.0327 

0.0059 
0.0099 
0.0236 
0.0458 
0.0335 

-- 
0.0060 
0.0103 
0.0304 
0.0296 

0.0206 
0.0851 
0.1421 
0.0989 

0.1651 
0.1599 
0.1446 
0.0868 

0.4156 
0.5883 
0.5830 
0.3386 
0.1376 

0.0168 
0.0299 
0.0296 

1.5 0.0059 
2.0 0.0010 

Triplet  Ip , P 
QT 

0.4867 
0.7508 
0.9836 
1.0529 
1.0215 
0.9156 

I* L = l  
0.2066 
0.1078 
0.0540 
0.0249 
0.0027 
0.0002 

L = 2  
0.0005 
0.0020 
o.ooti0 
0.0098 
0.0133 
0.0073 

1 ..5 P 2.0 

1 0.0217 1 :::::; 
0.0695 0.0341 
0.1100 0.0849 
0.0700 0.0772 

0.0363 
0.1002 
0.1336 
0.1231 
0.0559 

0.0016 
0.0037 
0.0055 
0.0059 
0.0028 

(d) Is - 2 s  - 2p eigenstates coupling approximation 
Singlet 

I< 
0.9 
1.0 
1.1 
1.2 
1.5 
2 .o 
3.0  

_1 

4.0 

~ 

L = 6  -- 
-- 
0.0075 
0.0 105 
0.0290 
0.0293 
0.0094 
-- 

a L = O  
0.0390 

L = l  
0.0743 
0.1123 
0.1094 
0.0806 
0.0175 
0.0023 
0.0002 
0.0001 

0.0360 
0.0358 
0.0345 
0.0172 
0.003C 
0.0004 
0.0001 

0.2375 
0.3405 
0.2912 
0.0953 
0.0170 
0.0015 
0.0003 

0.0317 
0.0886 
0.1278 
0.1003 
0.0303 
0.0037 
0.0008 

0.4375 
0.6239 
0.6189 

0.0308 0.0113 
0.0506 0.0237 
0.0693 0.044C 
0.0344 0.0333 
0.0060 0.0071 
0.0014 0.002C 

Triplet  

1047 I 
:s t c, 
m 3 - -  
0.7439 
1.1039 
1.1471 
0.9570 
0.5094 
0.1266 
0.0152 

QT 

0.3075 
0.7976 
1.1172 
1.1950 
1.1410 
0.9593 
0.6095 
0.4475 

k, 
0.9 
1 .o 
1.1 
1.2 
1.5 
2.0 
3.0 
4.0 

L =  0 
0.0007 
0.0033 
0.0070 
0.0096 
0.0107 
0.0053 
0.0010 
0.0002 

L = l  
0.0682 
0.0801 
0.0626 
0.0418 
0.0131 
0.0038 
0.0006 
0.0002 

c 
0.0801 
0.3064 
0.4799 
0.5282 
0.5608 
0.3363 
0.0870 
0.0105 

T- L = 2  
0.0112 
0.0500 
0.0567 
0.0537 
0.0351 
0.0143 
0.0025 
0.0006 

L = 4  
-- 
-- 
0.1082 
0.1409 
0.1343 
0.0625 
0.0122 
0.0031 

L = 3  

0.1730 
0.1841 
0.1761 
0.1081 
0.0393 
O.OOti6 
0.0016 

~~ -- 
L = 5  
-- 
-- 
0.0404 
0.0729 
0.1157 
0.0731 
0.0175 
0.0048 

L = 6  
-- 
-- 
0.0209 
0.0332 
0.0842 
0.0738 
0.0220 

L = 7  
-- 
-- 
-- 
-- 
0.0596 
0.0642 
0.0246 
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ELECTRON ENERGY ( e v )  

cases so far considered. For a given total 
angular momentumL , the angular momentum 
of the partial wave which is scattered from 
the 2p state may beL- 1 , L ,  a n d L +  1. The 
first and the third values correspond to  a 
wave function which has the same parity as 
the wave functions in the IS and the 2s  chan- 
nels; in this case,L-4,  - 4 ,  is even. The 
second value corresponds to a wave function 
with a different parity, and the only process 
that occurs with this parity is the 2p elastic 
scattering; in this case, L - 4 ,  - 4 ,  is odd. 
We have calculated the 2p - 2p cross  sections 
for the two cases,  and they are listed in 
Table 6. The total c ross  section is shown 

Figure5 - 1s - 2p total excitation cross section. (1s - 2p 
refers to 1 s  - 2p eigenstates coupling approximation; 
1 s  - 2s - 2p has similar meaning. EX. NEGL. refers to 
exchange neglected case, BORN i s  the Born approxima- 
tion, and EXP. refers to experiment.) 

in Figure 6 (on page 33). Because of the r - 2  

potential it is difficult to  find the zero energy 
value of this c ross  section. 

The 2s  - 2p transition c ross  section has application in some plasma and s te l lar  atmosphere 
calculations. The total c ross  section using the Born approximation is given by Seaton (Reference 
26). In Table 7 (on page 32) we list the partial c ross  section using the close coupling approxima- 
tion. This table may be found useful in problems in which plasma shielding occurs, where only 
electrons with an impact parameter with a given range can induce the 2s - 2p transition. 

It may be noted that the c ross  sections for the inverse processes 2s  - I S ,  2p - I S  , and 2p - 2s 

may be calculated by Equation 35 and the symmetry of the T-matrix. 

In all the tables listed here, k ,  is the wave number in the IS, and k, is the wave number in 
the 2 s  o r  the 2p channels. The energy, in electron volts, of the incident electron in each channel 
is given by E = 13.6 kZ, where k could be k, o r  k,. All c ros s  sections are in units of ,a:. In the 
different tables, Z is the sum of the partial c ros s  sections calculated. The total c ross  section Q is 
obtained by adding the contribution of higher partial waves than those calculated using the regular 
Born approximation; this could easily be done with the help of the table of the Born approximation. 

CONCLUSION 

The noniterative technique employed here can be applied to a large class  of problems containing 
exchange integrals. The method is particularly useful when the exchange potential is comparable to 
the direct  potential, in which case the convergence of iteration is slow. 
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~-~ p- 

k, L =  1 L = 2  L = 3  L - 4  L = 5  
0.24 26.562 6.1961 2.1260 0.92680 0.44497 
0.50 14.210 5.2190 2.1768 1.0526 0.55433 
0.68 8.8346 4.0761 1.9476 1.0100 0.54983 

1.6993 0.94122 0.53 2 04 0.83 6.0065 3.2062 
1.23 2.5053 1.7048 1.1013 0.70920 0.44518 
1.80 0.91169 0.74615 0.56949 0.4247 5 0.30158 
2.87 0.23647 0.22647 I 0.20035 0.17178 0.13578 

23.71 
16.923 
12.8854 
6.9237 
3.30733 
1.16488 

__ 
L = 6  L - 7  

0.22694 0.08105 
0.3 1476 0.18383 

0.18718 0.31728 
0.31331 0.18680 
0.28212 0.17577 
0.2 1122 0.14245 
0.10926 , 0.08177 

27.10 
17.54 
12.90 
6.776 
3.261 

k *  L = l  L = 2  L = 3  
0.24 61.12 8.444 2.5808 
0.50 15.292 6.884 2.5436 
0.68 8.008 4.940 2.2548 
0.83 5.108 3.6364 1.9292 
1.23 2.0484 1.7392 1.1812 
1.80 0.7640 0.7220 0.5816 
2.87 0.2132 0.2180 0.2004 

k2 I L = l  1 L = 2  I L = 3  
0.24 I 2.963 I 4.161 1 0.6725 

L = 4  L =  j ~ [pczp6 
1.1408 0.6200 0.3720 0.2316 
1.1580 0.6216 0.3640 0.2352 
1.1160 0.6160 0.3640 0.2352 
1.0380 0.5968 0.3592 0.2340 
0.7652 0.4972 0.3236 0.2208 
0.4436 0.3312 0.2400 0.1784 
0.1776;  - 0.1520 0.1272 0.1064- 

2.165 
1.371 
0.5280 
0.1928 

2.87 0.0534 

L = 2  
4.0427 

7.79 1 
4.720 
3.373 

1.23 1.484 
1.80 0.5674 
2.87 0.1596 

L = 5  
0.57480 w 0.24 12.488 

k, 
0.24 
0.50 
0.68 
0.83 
1.23 
1.80 

3.182 
1.728 
1.107 
0.4603 
0.1831 
0.0547 ____ 

C E  Q T  L = O  L = l  L = 2  L = 3  L = 4  L = 5  L = 6  L = 7  
31.96 91.21 154.6 92.86 55.86 36.79 24.37 -- 487.7 566.32 
9.371 12.65 30.88 20.53 12.99 8.451 5.695 -- 100.6 129.8 
4.156 5.953 13.19 9.628 6.563 4.508 3.130 -- 47.13 66.56 

28.41 43.07 2.542 4.560 7.424 5.249 3.811 2.793 2.032 -- 
11.37 19.56 1.208 2.879 2.906 1.734 1.106 0.8438 0.6912 -- 

0.5612 1.385 1.238 0.8299 0.5109 0.3005 0.2022 -- 5.028 9.382 

0.7915 
0.6851 
0.5362 
0.31 15 
0.1475 
0.0503 

1.851 1.504 
2.219 1.361 
2.099 1.237 
1.225 0.8376 
0.5337 0.4295 
0.1632 

L = l  
230.42 
74.475 
36.478 
21.559 
7.3349 
2.3518 
0.55809 
0.20876 

L = 4  I L = 5  
0.2861 I 0.1552 
0.3066: 0.1576 
0.3025 0.1587 
0.2799 0.1547 
0.1991 0.1277 
0.1124 0.0837 

Triplet  

0.8193 
0.7700 
0.7198 
0.5509 
0.3283 
0.1328 

0.4598 
0.4481 
0.4318 
0.3630 
0.2456 
0.1136 

7.0963 
6.5573 
5.4143 
2.9703 
1.3 155 
0.40443 
0.17048 

I 

L = 3  
1.9014 
0.92172 
1.0156 
1.1653 
1.1453 
0.74676 
0.30267 
0.143 07 

L = 4  
0.30797 
0.48094 
0.29902 
0.26124 
0.3 7 7 50 
0.39 29 0 
0.21866 
0.11656 

~- 

0.45745 
0.27895 
0.15835 
0.11091 
0.18754 
0.15188 
0.09255 

~- - 

L = 6  
0.0930 
0.0913 
0.0920 
0.0913 
0.0823 
0.0605 
0.0319 

L = 7  
0.0629 
0.0589 
0.0590 
0.0589 
0.0 5 5 8 
0.0449 
0.0267 

L = 6  1 L = 7  
0.2788 0;lssc;- 
0.2722 0.1764 
0.2700 0.1756 
0.2652 0.1744 

0.1639 
0.1330 
0.0797 

0.2384 
0.1784 
0.0951 _ _ _  

ation 
L = 6  

0.29675 
0.30098 
0.23113 
0.15225 
0.043 7 7 
0.07731 
0.09753 
0.06896 

___- 
L = 7  

0.06128 
0.05695 
0.04364 
0.02533 
0.03572 
0.02824 
0.05832 
0.04864 

~ _ _  
E, 

250.09 
83.965 
44.978 
28.956 
12.269 
5.2348 
1.8355 
0.8677 

8.3 23 
5.190 
3.619 
1.7647 
0.8249 

12.87 
9.964 
8.300 
4.863 
2.4159 

QT 
290.69 
109.714 
ti3.742 
43.572 
20.571 
9.6066 
3 3272 
2.1455 
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Table 6 (Concluded) 
2p - 2p Elastic Cross Section. 

(f) L -4,  - d 2  even, Is - 2p eigenstates coupling approximation 

0.24 1 15.62 I 26.72 I 32.44 I 6.674 I 1.252 I 0.7359 I -- 

- 
k, I L = O  I L = l  I L = 2  I L = 3  I L = 4  I L = 5  

0.24 1 1.964 I 5.238 I 17.34 I 1.260 I 0.4896 I 0.2460 

-- 

3.159 1.544 1.439 0.4063 0.1906 
2.091 1.039 0.4944 0.2539 0.1520 
1.252 0.9930 0.1532 0.1191 0.0990 

0.6167 0.2249 0.0635 0.0249 Gi96: ! 0.2926 0.1818 0.0954 T r i d e t  0.0426 

0.50 
0.68 
0.83 
1.23 
1.80 

0.1133 
0.0984 

0.0217 
0.0172 

0.0766 -- 

4.844 3.384 19.97 12.52 0.8285 0.3266 0.2754 -- 
2.247 3.886 10.33 5.922 1.035 0.2270 0.1764 -- 
1.293 3.650 6.287 3.476 0.9248 0.2097 0.1162 -- 
0.4842 2.287 2.424 1.418 0.6072 0.2079 0.0717 -- 
0.1909 1.063 0.9673 0.6659 0.4001 0.2024 0.0962 -- 

' L = 3  
21.41 
4.900 
2.683 
1.518 
0.3663 
0.1816 
0.0739 
0.0373 

7.365 
4.363 
2.816 
1.7384 
1.0233 

(g) L - 4 ,  - t2 even, 1s - 2 s  - 2p eigenstates coupling approximation 
Singlet 

l;,,' 1 L = 2  
38.56 

X;l 1 L = 2  
63.10 

21.62 
8.986 
4.796 
1.599 
0.6614 
0.2330 

Triplet 

L =  4 
41.31 
10.38 
5.149 
2.950 
0.9568 
0.4150 
0.1780 
0.0982 

L = 5  
26.12 
6.373 
3.337 
2.013 
0.6421 
0.2540 
0.1291 
0.0810 

L = 6  
6.432 
1.417 
0.7903 
0.5313 
0.1916 
0.0471 
0.0268 
0.0212 

L = 6  
17.13 
4.255 
2.302 
1.468 
0.4924 
0.1639 
0.0907 
0.0655 

26.548 
13.047 
7.524 
2.641 r 
72.17 
37.37 
23.333 
9.419 

QT 
518.92 
122.01 
67.46 
44.54 
20.11 
9.531 
3.945 
-- 
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Table 7 
2 s  - 2p Excitation C r o s s  Section. 

(a\ Born aDDroximation 
L = 5  L = 6  c 

209.74 158.31 1985.69 
49.590 40.391 303.935 
24.598 21.122 120.096 
14.135 12.973 60.560 
3.6015 3.9501 13.099 
0.59807 0.78354 2.0692 
0.04450 0.06688 0.15456 
0.00699 0.01096 0.02452 

*QT 
13560 
3465.0 
1930.9 
1308.4 
620.51 
294.95 
120.26 
66.509 

L = 3  
343.68 
64.948 
24.356 
11.011 
1.7481 
0.20201 
0.01211 
0.00182 

L = l  
465.14 
30.729 
6.6619 
2.1480 
0.20887 
0.01900 
0.00107 , 0.00017 

L = 2  
449.77 
57.561 
16.736 
6.4066 
0.78437 
0.07823 
0.00444 
0.00067 

L = O  
210.45 
6.2469 
0.92 003 
0.24580 
0.02 03 9 
0.00187 
0.00011 
0.00002 

k, 
0.245 
0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3.905 

54.469 
25.702 
13.641 
2.7859 
0.38645 
0.02545 

tb\ Exchance nedec ted  Is - 2 s  - 20 eigenstates coupling approxi mation 

-- -- I 41.11 I 124 76 
L = 5  I L = 6  1 c QT 

\ I  

k 2  I L = O  I L =  1 
0.245 I 5.311 1 12.59 23.21 
0.500 0.8651 10.55 1.143 
0.678 1.150 5.907 0.5760 
0.831 1.249 2.859 0.3831 
0.225 0.3847 0.4266 0.0881 

3308.8 
1867.4 
1280.1 
615.52 
294.26 

18.92 
7.168 
3.158 
0.4560 

26.25 
12.28 
6.664 
1.403 

-- 57.73 
14.46 15.08 56.62 
8.591 9.391 32.295 
2.328 3.022 8.108 
0.3930 0.6183 1.3824 

-- 

11.803 I 0.0654 I 0.0516 I 0.0142 I 0.0553 I 0.1846 I 
(c) 1s - 2 s  - 2p eigenstates coupling approximation 

Singlet I L =  1 
4.424 
1.605 
1.446 
0.9881 
0.1516 
0.0157 
0.0010 
0.0002 

L = 4  
-- 
7.159 
3.693 
2.144 
0.4584 
0.0530 
0.0032 
0.0005 _- 

L =  0 
2 243  
0.1241 
0.0362 
0.1866 
0.1048 
0.0175 
0.0014 
0.0002 

k2 
0.245 
0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3.905 

16.596 
12.694 
10.006 
2.473 
0.3890 
0.0278 
0.0043 
I 

6.360 
3.056 
1.488 
0.1639 
0.0148 
0.0010 
0.0002 

1.348 
0.5518 
0.2615 
0.0384 
0.004'6 
0.0004 
0.0001 

-- 
3.911 
2.433 
0.7031 
0.1108 
0.0075 
0.0012 

2.505 
0.8529 
0.1726 
0.0133 
0.0019 

Triplet  

L = 4  -- 
17.01 
6.810 
3.411 
0.7623 
0.1223 
0.0095 
0.0015 

Q T  
~. 

12512 
3300.3 
1867.0 
1276.4 
614.8 
294.18 
120.21 
66.502 

L = l  1 L = 2  I L = 3  
10.40 1 56.74 I -- 

k, 
0.245 

L = O  
0.0000 
2.322 
1.590 
0.9885 
0.2648 
0.0455 
0.0040 
0.0007 

0.500 
0.678 
0.831 
1.225 
1.803 
2.872 
3.905 

5.518 6.556 
1.423 1.987 
0.2544 0.4070 
0.0208 0.0359 
0.0035 0.0063 1 

* QT 

1. 

2 .  

3. 
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Appendix A 

The Four Differential Equations 

= 2 y o ( l s l s ,  r ) u ( k , L ,  r )  + 2yo ( I s Z s ,  r ) u ( k 2 L ,  r) 

1/2 9. 
+ 2p [(Z+ 1 )  (2L- 1)2 ] rRZ1(r)YL-, ( l s k 2 L -  1 ,  r) 

- pS(L, 0 )  (1 +k:) ( l s l k ,  L) rRl0 ( r )  

- PS(L, 0)  ( 1  + k:) ( l s l k 2  L) rR, ( r )  

- ~ S ( L - L ,  0) ( l + k , 2 )  ( l s l k z L - l )  rR2,(r) 
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6'T) yL ( 2 p k 2 L +  1, r) r R z l ( r )  
( = + I )  
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3 ( L t  1) 
- 2P[ (2L t 1) ( 2L t 3 ) 2 ]  rR20 ( r )  YLtl(2PkZ I-1 r )  

6m r R Z r ( r ) y L  ( 2 p k 2 L -  1, r )  
( 2 L +  1 ) 2  
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Appendix B 

Elements of the Potential Matrix 

Elements of Dij 

D,, = - (1 + + ) e - z r ,  D,, = - (++  T +  3 a r + T) rz  e - =  , 

D,, = - [ + + : + + + & ] e - r + w [ $ - ( > + ; i  6 L - 1  1 1 1 r  + 2 ; + g + m + & ) e - r ] ,  

r z  2 r  6 i 4  ::4)e-r] * D,, = - [++T 3 +++&I e-‘ + .*[+ 6 L + 2  - (5 + _I_ + - 1 1  + -t - + - 

D,, = D,, = $ (r  + + ) e - , D r  , 

3 9  128 fi L 1/2 

D,, = D,, = 243 (z) [+ - (5 + +-gig) e-3r/z]  , 

3 9  
D,, = D,, = - - 1 2 8 f i  243 (2L+ - L + l  1)l” [ $ - (5 + ?; + -+ 8 e-3rlz-J , 

D,, = D,, = - 3 (&)‘Iz [$ - (5 + + + T + T + & ) e - r ]  1 r  , 

1 1 1  
2r 6 i 4  ;41) ‘ - 1 1  * 

D, = D,, = - 18[-]”*[$-($-+-+-t-+-+- L(L t 1) 
(2L+ 1 ) 2  rz 

Elements of F i j  
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L + 2  
rILt3 dr  ' - R,, rL+3 Jar$ dr  I ) ]  , 

F,, & [? 1; R,, rlL+' d r '  -R2 ,  rLtl Ior? dr ] , 

1'" x [$ lor R,, r rL  dr  - R 2 ,  r L  lor% r,L-, d r '  ] 7 

F31 = F13 [ R l O  R21] ' 

F14 = - fii[(2Lt 1) L +  ( 2 L t  1 3 ) 2  1'" x [z [ R, r rL+ '  d r  ' - R,, rL+2 1% r,L+l d r  '3 , 
F41 = F14 [ R l O  a R 2 1 ]  ' 

L 1'" x [% rL-l  jor R2b r ' L  d r '  - R,, rL Ior% r,L-, d r '  ] 9 

L +  1 
] ' I2 x [$ [ R, rJLtZ d r '  - R,, rL+, [s d r ' ]  , 



Elements of g.. and h.. 
I J  I J  

3,BRZ1 rLtl RZl 
1 h& = - .  g3: = ( U . - 1 ) ( 2 L + 1 ) 2  rL 

33(L + 2)  R2, RZl 
g: = ( 2 L + 3 ) ( 2 L t 5 ) ’  h 4  = - rL+2 ’ 

1 l + k :  
g13 R2, rL  hI3 = R l o [ ~  - 7 s(L, 1) r ]  , 

R 10 
R,lrL+2 , h14 = L t  1 

- 7  
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g41 = g14 [ R Z l  * R1O] ’ h41 = h14 [RIO R21] ’ 

g42 = g24 [ R Z l -  R20] ’ h42 h24 [ R Z O  - R21] ’ 

In the F i j  matrix the interchange of the functions R l o ,  R z O ,  and R,, accompanies the inter- 
change of their arguments too. 
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Appendix C 

Removal of the Singularity in the Determinant of the Coefficients 
of the linear Transformation for 1 = 0, 1 

Case I: 1 = 0 

By using the definition of D i j  and Fij  and Equations 63 in the text, the following relation can 
be derived from Equation 59 (text): 

where the superscript  p is suppressed when there is only one value for  F ,  and 

a13 = J Rl0R2, r3  dr [215 x 3-9IV2 9 

0 

a= = ~ o m R z o R z l r 3 d r  - 3 f i  . 

Integrating the left-hand side of Equation C1 by parts, and making use of Equations 11 and 63 (text), 
w e  obtain 

We conclude that 

Equation C3 connects the right-hand sides of the four equations of Equation 62 specified by 
i j  = 21 ,  12 ,  24, 14.  A similar relation should hold among the left-hand sides of these equations. 
This in fact is the case and, by making use of the f i rs t  of Equations 63, it can be shown directly that 
equations s imilar  to  Equation C3 hold among the elements of each column k l v  of the left-hand side 
of Equation 62 specified by i j = 21,  12, 24, 1 4 .  We conclude that one equation of Equation 62 is 
linearly dependent on others and the determinant of Equation 62 is singular. 
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Case 11: L = 1 

Similar to the previous case, the following relation can be derived from Equation 59 in the 
text: 

where 

a33 = lorn RAr4  dr 30 . 

Integrating the left-hand side of Equation C4 by parts,  and making use of Equations 11 and 63, we 
obtain 

r m  

("? +k;)vi]dr = - 2[B3,-pBI3] . 
(C5) lo dr2 

Combining Equations C4 and C5, we get 

Finally, Equation 59 (text) gives the following relation: 

Integration by parts of the left-hand side gives, as before, 

I 
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whereupon we get 

Similar to the case L = 0, Equations C6 and C9 indicate that two equations of Equation 62 are 
linearly dependent on others and the determinant of Equation 62 is singular. 

To remove the singularity in the L = 0 case, one of the C; is chosen to be arbitrary; and a 
degenerate equation is removed from Equation 62 (text). Similarly, in the L = 1 case two of the 
q’, are chosen arbitrary; and two degenerate equations are removed from Equation 62. 
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Appendix D 

Elements of the Matrix of the Sum of the Asymptotic 
Coulomb and Centrifugal Potentials 

NASA-Langley, 1964 6-419 47 


